sos-code-article7/sos/kmem_vmm.c
2017-01-29 14:33:48 +01:00

607 lines
18 KiB
C

/* Copyright (C) 2000 Thomas Petazzoni
Copyright (C) 2004 David Decotigny
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA.
*/
#include <sos/list.h>
#include <sos/physmem.h>
#include <hwcore/paging.h>
#include <sos/assert.h>
#include "kmem_vmm.h"
/** The structure of a range of kernel-space virtual addresses */
struct sos_kmem_range
{
sos_vaddr_t base_vaddr;
sos_count_t nb_pages;
/* The slab owning this range, or NULL */
struct sos_kslab *slab;
struct sos_kmem_range *prev, *next;
};
const int sizeof_struct_sos_kmem_range = sizeof(struct sos_kmem_range);
/** The ranges are SORTED in (strictly) ascending base addresses */
static struct sos_kmem_range *kmem_free_range_list, *kmem_used_range_list;
/** The slab cache for the kmem ranges */
static struct sos_kslab_cache *kmem_range_cache;
/** Helper function to get the closest preceding or containing
range for the given virtual address */
static struct sos_kmem_range *
get_closest_preceding_kmem_range(struct sos_kmem_range *the_list,
sos_vaddr_t vaddr)
{
int nb_elements;
struct sos_kmem_range *a_range, *ret_range;
/* kmem_range list is kept SORTED, so we exit as soon as vaddr >= a
range base address */
ret_range = NULL;
list_foreach(the_list, a_range, nb_elements)
{
if (vaddr < a_range->base_vaddr)
return ret_range;
ret_range = a_range;
}
/* This will always be the LAST range in the kmem area */
return ret_range;
}
/**
* Helper function to lookup a free range large enough to hold nb_pages
* pages (first fit)
*/
static struct sos_kmem_range *find_suitable_free_range(sos_count_t nb_pages)
{
int nb_elements;
struct sos_kmem_range *r;
list_foreach(kmem_free_range_list, r, nb_elements)
{
if (r->nb_pages >= nb_pages)
return r;
}
return NULL;
}
/**
* Helper function to add a_range in the_list, in strictly ascending order.
*
* @return The (possibly) new head of the_list
*/
static struct sos_kmem_range *insert_range(struct sos_kmem_range *the_list,
struct sos_kmem_range *a_range)
{
struct sos_kmem_range *prec_used;
/** Look for any preceding range */
prec_used = get_closest_preceding_kmem_range(the_list,
a_range->base_vaddr);
/** insert a_range /after/ this prec_used */
if (prec_used != NULL)
list_insert_after(the_list, prec_used, a_range);
else /* Insert at the beginning of the list */
list_add_head(the_list, a_range);
return the_list;
}
/**
* Helper function to retrieve the range owning the given vaddr, by
* scanning the physical memory first if vaddr is mapped in RAM
*/
static struct sos_kmem_range *lookup_range(sos_vaddr_t vaddr)
{
struct sos_kmem_range *range;
/* First: try to retrieve the physical page mapped at this address */
sos_paddr_t ppage_paddr = SOS_PAGE_ALIGN_INF(sos_paging_get_paddr(vaddr));
if (ppage_paddr)
{
range = sos_physmem_get_kmem_range(ppage_paddr);
/* If a page is mapped at this address, it is EXPECTED that it
is really associated with a range */
SOS_ASSERT_FATAL(range != NULL);
}
/* Otherwise scan the list of used ranges, looking for the range
owning the address */
else
{
range = get_closest_preceding_kmem_range(kmem_used_range_list,
vaddr);
/* Not found */
if (! range)
return NULL;
/* vaddr not covered by this range */
if ( (vaddr < range->base_vaddr)
|| (vaddr >= (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE)) )
return NULL;
}
return range;
}
/**
* Helper function for sos_kmem_vmm_setup() to initialize a new range
* that maps a given area as free or as already used.
* This function either succeeds or halts the whole system.
*/
static struct sos_kmem_range *
create_range(sos_bool_t is_free,
sos_vaddr_t base_vaddr,
sos_vaddr_t top_vaddr,
struct sos_kslab *associated_slab)
{
struct sos_kmem_range *range;
SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(base_vaddr));
SOS_ASSERT_FATAL(SOS_IS_PAGE_ALIGNED(top_vaddr));
if ((top_vaddr - base_vaddr) < SOS_PAGE_SIZE)
return NULL;
range = (struct sos_kmem_range*)sos_kmem_cache_alloc(kmem_range_cache,
SOS_KSLAB_ALLOC_ATOMIC);
SOS_ASSERT_FATAL(range != NULL);
range->base_vaddr = base_vaddr;
range->nb_pages = (top_vaddr - base_vaddr) / SOS_PAGE_SIZE;
if (is_free)
{
list_add_tail(kmem_free_range_list,
range);
}
else
{
sos_vaddr_t vaddr;
range->slab = associated_slab;
list_add_tail(kmem_used_range_list,
range);
/* Ok, set the range owner for the pages in this page */
for (vaddr = base_vaddr ;
vaddr < top_vaddr ;
vaddr += SOS_PAGE_SIZE)
{
sos_paddr_t ppage_paddr = sos_paging_get_paddr(vaddr);
SOS_ASSERT_FATAL((void*)ppage_paddr != NULL);
sos_physmem_set_kmem_range(ppage_paddr, range);
}
}
return range;
}
sos_ret_t
sos_kmem_vmm_subsystem_setup(sos_vaddr_t kernel_core_base,
sos_vaddr_t kernel_core_top,
sos_vaddr_t bootstrap_stack_bottom_vaddr,
sos_vaddr_t bootstrap_stack_top_vaddr)
{
struct sos_kslab *first_struct_slab_of_caches,
*first_struct_slab_of_ranges;
sos_vaddr_t first_slab_of_caches_base,
first_slab_of_caches_nb_pages,
first_slab_of_ranges_base,
first_slab_of_ranges_nb_pages;
struct sos_kmem_range *first_range_of_caches,
*first_range_of_ranges;
list_init(kmem_free_range_list);
list_init(kmem_used_range_list);
kmem_range_cache
= sos_kmem_cache_subsystem_setup_prepare(kernel_core_base,
kernel_core_top,
sizeof(struct sos_kmem_range),
& first_struct_slab_of_caches,
& first_slab_of_caches_base,
& first_slab_of_caches_nb_pages,
& first_struct_slab_of_ranges,
& first_slab_of_ranges_base,
& first_slab_of_ranges_nb_pages);
SOS_ASSERT_FATAL(kmem_range_cache != NULL);
/* Mark virtual addresses 16kB - Video as FREE */
create_range(TRUE,
SOS_KMEM_VMM_BASE,
SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
NULL);
/* Mark virtual addresses in Video hardware mapping as NOT FREE */
create_range(FALSE,
SOS_PAGE_ALIGN_INF(BIOS_N_VIDEO_START),
SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
NULL);
/* Mark virtual addresses Video - Kernel as FREE */
create_range(TRUE,
SOS_PAGE_ALIGN_SUP(BIOS_N_VIDEO_END),
SOS_PAGE_ALIGN_INF(kernel_core_base),
NULL);
/* Mark virtual addresses in Kernel code/data up to the bootstrap stack
as NOT FREE */
create_range(FALSE,
SOS_PAGE_ALIGN_INF(kernel_core_base),
bootstrap_stack_bottom_vaddr,
NULL);
/* Mark virtual addresses in the bootstrap stack as NOT FREE too,
but in another vmm region in order to be un-allocated later */
create_range(FALSE,
bootstrap_stack_bottom_vaddr,
bootstrap_stack_top_vaddr,
NULL);
/* Mark the remaining virtual addresses in Kernel code/data after
the bootstrap stack as NOT FREE */
create_range(FALSE,
bootstrap_stack_top_vaddr,
SOS_PAGE_ALIGN_SUP(kernel_core_top),
NULL);
/* Mark virtual addresses in the first slab of the cache of caches
as NOT FREE */
SOS_ASSERT_FATAL(SOS_PAGE_ALIGN_SUP(kernel_core_top)
== first_slab_of_caches_base);
SOS_ASSERT_FATAL(first_struct_slab_of_caches != NULL);
first_range_of_caches
= create_range(FALSE,
first_slab_of_caches_base,
first_slab_of_caches_base
+ first_slab_of_caches_nb_pages*SOS_PAGE_SIZE,
first_struct_slab_of_caches);
/* Mark virtual addresses in the first slab of the cache of ranges
as NOT FREE */
SOS_ASSERT_FATAL((first_slab_of_caches_base
+ first_slab_of_caches_nb_pages*SOS_PAGE_SIZE)
== first_slab_of_ranges_base);
SOS_ASSERT_FATAL(first_struct_slab_of_ranges != NULL);
first_range_of_ranges
= create_range(FALSE,
first_slab_of_ranges_base,
first_slab_of_ranges_base
+ first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
first_struct_slab_of_ranges);
/* Mark virtual addresses after these slabs as FREE */
create_range(TRUE,
first_slab_of_ranges_base
+ first_slab_of_ranges_nb_pages*SOS_PAGE_SIZE,
SOS_KMEM_VMM_TOP,
NULL);
/* Update the cache subsystem so that the artificially-created
caches of caches and ranges really behave like *normal* caches (ie
those allocated by the normal slab API) */
sos_kmem_cache_subsystem_setup_commit(first_struct_slab_of_caches,
first_range_of_caches,
first_struct_slab_of_ranges,
first_range_of_ranges);
return SOS_OK;
}
/**
* Allocate a new kernel area spanning one or multiple pages.
*
* @eturn a new range structure
*/
struct sos_kmem_range *sos_kmem_vmm_new_range(sos_count_t nb_pages,
sos_ui32_t flags,
sos_vaddr_t * range_start)
{
struct sos_kmem_range *free_range, *new_range;
if (nb_pages <= 0)
return NULL;
/* Find a suitable free range to hold the size-sized object */
free_range = find_suitable_free_range(nb_pages);
if (free_range == NULL)
return NULL;
/* If range has exactly the requested size, just move it to the
"used" list */
if(free_range->nb_pages == nb_pages)
{
list_delete(kmem_free_range_list, free_range);
kmem_used_range_list = insert_range(kmem_used_range_list,
free_range);
/* The new_range is exactly the free_range */
new_range = free_range;
}
/* Otherwise the range is bigger than the requested size, split it.
This involves reducing its size, and allocate a new range, which
is going to be added to the "used" list */
else
{
/* free_range split in { new_range | free_range } */
new_range = (struct sos_kmem_range*)
sos_kmem_cache_alloc(kmem_range_cache,
(flags & SOS_KMEM_VMM_ATOMIC)?
SOS_KSLAB_ALLOC_ATOMIC:0);
if (! new_range)
return NULL;
new_range->base_vaddr = free_range->base_vaddr;
new_range->nb_pages = nb_pages;
free_range->base_vaddr += nb_pages*SOS_PAGE_SIZE;
free_range->nb_pages -= nb_pages;
/* free_range is still at the same place in the list */
/* insert new_range in the used list */
kmem_used_range_list = insert_range(kmem_used_range_list,
new_range);
}
/* By default, the range is not associated with any slab */
new_range->slab = NULL;
/* If mapping of physical pages is needed, map them now */
if (flags & SOS_KMEM_VMM_MAP)
{
int i;
for (i = 0 ; i < nb_pages ; i ++)
{
/* Get a new physical page */
sos_paddr_t ppage_paddr
= sos_physmem_ref_physpage_new(! (flags & SOS_KMEM_VMM_ATOMIC));
/* Map the page in kernel space */
if (ppage_paddr)
{
if (sos_paging_map(ppage_paddr,
new_range->base_vaddr
+ i * SOS_PAGE_SIZE,
FALSE /* Not a user page */,
((flags & SOS_KMEM_VMM_ATOMIC)?
SOS_VM_MAP_ATOMIC:0)
| SOS_VM_MAP_PROT_READ
| SOS_VM_MAP_PROT_WRITE))
{
/* Failed => force unallocation, see below */
sos_physmem_unref_physpage(ppage_paddr);
ppage_paddr = (sos_paddr_t)NULL;
}
else
{
/* Success : page can be unreferenced since it is
now mapped */
sos_physmem_unref_physpage(ppage_paddr);
}
}
/* Undo the allocation if failed to allocate or map a new page */
if (! ppage_paddr)
{
sos_kmem_vmm_del_range(new_range);
return NULL;
}
/* Ok, set the range owner for this page */
sos_physmem_set_kmem_range(ppage_paddr, new_range);
}
}
/* ... Otherwise: Demand Paging will do the job */
if (range_start)
*range_start = new_range->base_vaddr;
return new_range;
}
sos_ret_t sos_kmem_vmm_del_range(struct sos_kmem_range *range)
{
int i;
struct sos_kmem_range *ranges_to_free;
list_init(ranges_to_free);
SOS_ASSERT_FATAL(range != NULL);
SOS_ASSERT_FATAL(range->slab == NULL);
/* Remove the range from the 'USED' list now */
list_delete(kmem_used_range_list, range);
/*
* The following do..while() loop is here to avoid an indirect
* recursion: if we call directly kmem_cache_free() from inside the
* current function, we take the risk to re-enter the current function
* (sos_kmem_vmm_del_range()) again, which may cause problem if it
* in turn calls kmem_slab again and sos_kmem_vmm_del_range again,
* and again and again. This may happen while freeing ranges of
* struct sos_kslab...
*
* To avoid this,we choose to call a special function of kmem_slab
* doing almost the same as sos_kmem_cache_free(), but which does
* NOT call us (ie sos_kmem_vmm_del_range()): instead WE add the
* range that is to be freed to a list, and the do..while() loop is
* here to process this list ! The recursion is replaced by
* classical iterations.
*/
do
{
/* Ok, we got the range. Now, insert this range in the free list */
kmem_free_range_list = insert_range(kmem_free_range_list, range);
/* Unmap the physical pages */
for (i = 0 ; i < range->nb_pages ; i ++)
{
/* This will work even if no page is mapped at this address */
sos_paging_unmap(range->base_vaddr + i*SOS_PAGE_SIZE);
}
/* Eventually coalesce it with prev/next free ranges (there is
always a valid prev/next link since the list is circular). Note:
the tests below will lead to correct behaviour even if the list
is limited to the 'range' singleton, at least as long as the
range is not zero-sized */
/* Merge with preceding one ? */
if (range->prev->base_vaddr + range->prev->nb_pages*SOS_PAGE_SIZE
== range->base_vaddr)
{
struct sos_kmem_range *empty_range_of_ranges = NULL;
struct sos_kmem_range *prec_free = range->prev;
/* Merge them */
prec_free->nb_pages += range->nb_pages;
list_delete(kmem_free_range_list, range);
/* Mark the range as free. This may cause the slab owning
the range to become empty */
empty_range_of_ranges =
sos_kmem_cache_release_struct_range(range);
/* If this causes the slab owning the range to become empty,
add the range corresponding to the slab at the end of the
list of the ranges to be freed: it will be actually freed
in one of the next iterations of the do{} loop. */
if (empty_range_of_ranges != NULL)
{
list_delete(kmem_used_range_list, empty_range_of_ranges);
list_add_tail(ranges_to_free, empty_range_of_ranges);
}
/* Set range to the beginning of this coelescion */
range = prec_free;
}
/* Merge with next one ? [NO 'else' since range may be the result of
the merge above] */
if (range->base_vaddr + range->nb_pages*SOS_PAGE_SIZE
== range->next->base_vaddr)
{
struct sos_kmem_range *empty_range_of_ranges = NULL;
struct sos_kmem_range *next_range = range->next;
/* Merge them */
range->nb_pages += next_range->nb_pages;
list_delete(kmem_free_range_list, next_range);
/* Mark the next_range as free. This may cause the slab
owning the next_range to become empty */
empty_range_of_ranges =
sos_kmem_cache_release_struct_range(next_range);
/* If this causes the slab owning the next_range to become
empty, add the range corresponding to the slab at the end
of the list of the ranges to be freed: it will be
actually freed in one of the next iterations of the
do{} loop. */
if (empty_range_of_ranges != NULL)
{
list_delete(kmem_used_range_list, empty_range_of_ranges);
list_add_tail(ranges_to_free, empty_range_of_ranges);
}
}
/* If deleting the range(s) caused one or more range(s) to be
freed, get the next one to free */
if (list_is_empty(ranges_to_free))
range = NULL; /* No range left to free */
else
range = list_pop_head(ranges_to_free);
}
/* Stop when there is no range left to be freed for now */
while (range != NULL);
return SOS_OK;
}
sos_vaddr_t sos_kmem_vmm_alloc(sos_count_t nb_pages,
sos_ui32_t flags)
{
struct sos_kmem_range *range
= sos_kmem_vmm_new_range(nb_pages,
flags,
NULL);
if (! range)
return (sos_vaddr_t)NULL;
return range->base_vaddr;
}
sos_ret_t sos_kmem_vmm_free(sos_vaddr_t vaddr)
{
struct sos_kmem_range *range = lookup_range(vaddr);
/* We expect that the given address is the base address of the
range */
if (!range || (range->base_vaddr != vaddr))
return -SOS_EINVAL;
/* We expect that this range is not held by any cache */
if (range->slab != NULL)
return -SOS_EBUSY;
return sos_kmem_vmm_del_range(range);
}
sos_ret_t sos_kmem_vmm_set_slab(struct sos_kmem_range *range,
struct sos_kslab *slab)
{
if (! range)
return -SOS_EINVAL;
range->slab = slab;
return SOS_OK;
}
struct sos_kslab * sos_kmem_vmm_resolve_slab(sos_vaddr_t vaddr)
{
struct sos_kmem_range *range = lookup_range(vaddr);
if (! range)
return NULL;
return range->slab;
}
sos_bool_t sos_kmem_vmm_is_valid_vaddr(sos_vaddr_t vaddr)
{
struct sos_kmem_range *range = lookup_range(vaddr);
return (range != NULL);
}