179 lines
8.2 KiB
C
179 lines
8.2 KiB
C
/* Copyright (C) 2021 Mathieu Maret
|
|
Copyright (C) 2004 David Decotigny
|
|
Copyright (C) 1999 Free Software Foundation, Inc.
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
USA.
|
|
*/
|
|
#include "segment.h"
|
|
#include "gdt.h"
|
|
#include "stddef.h"
|
|
#include "stdint.h"
|
|
|
|
/**
|
|
* The sructure of a segment descriptor.
|
|
*
|
|
* @see Intel x86 doc, Vol 3, section 3.4.3, figure 3-8. For segment
|
|
* types, see section 3.5
|
|
*/
|
|
struct x86_segment_descriptor {
|
|
/* Lowest dword */
|
|
uint16_t limit_15_0; /* Segment limit, bits 15..0 */
|
|
uint16_t base_paged_addr_15_0; /* Base address, bits 15..0 */
|
|
|
|
/* Highest dword */
|
|
uint8_t base_paged_addr_23_16; /* Base address bits 23..16 */
|
|
uint8_t segment_type : 4; /* Section 3.4.3.1 (code/data)
|
|
and 3.5 (system) of Intel x86 vol 3 */
|
|
uint8_t descriptor_type : 1; /* 0=system, 1=Code/Data */
|
|
uint8_t dpl : 2;
|
|
uint8_t present : 1;
|
|
|
|
uint8_t limit_19_16 : 4; /* Segment limit, bits 19..16 */
|
|
uint8_t custom : 1;
|
|
uint8_t zero : 1;
|
|
uint8_t op_size : 1; /* 0=16bits instructions, 1=32bits */
|
|
uint8_t granularity : 1; /* 0=limit in bytes, 1=limit in pages */
|
|
|
|
uint8_t base_paged_addr_31_24; /* Base address bits 31..24 */
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/**
|
|
* The GDT register, which stores the address and size of the
|
|
* GDT.
|
|
*
|
|
* @see Intel x86 doc vol 3, section 2.4, figure 2-4; and section
|
|
* 3.5.1
|
|
*/
|
|
struct x86_gdt_register {
|
|
/* The maximum GDT offset allowed to access an entry in the GDT */
|
|
uint16_t limit;
|
|
|
|
/* This is not exactly a "virtual" address, ie an adddress such as
|
|
those of instructions and data; this is a "linear" address, ie an
|
|
address in the paged memory. However, we configure the
|
|
segmented memory as a "flat" space: the 0-4GB segment-based (ie
|
|
"virtual") addresses directly map to the 0-4GB paged memory (ie
|
|
"linear"), so that the "linear" addresses are numerically equal
|
|
to the "virtual" addresses: this base_addr will thus be the same
|
|
as the address of the gdt array */
|
|
uint32_t base_addr;
|
|
} __attribute__((packed, aligned(8)));
|
|
|
|
/**
|
|
* Helper macro that builds a Segment descriptor for the virtual
|
|
* 0..4GB addresses to be mapped to the linear 0..4GB linear
|
|
* addresses.
|
|
*/
|
|
#define BUILD_GDTE(descr_privilege_level, is_code) \
|
|
((struct x86_segment_descriptor){ \
|
|
.limit_15_0 = 0xffff, \
|
|
.base_paged_addr_15_0 = 0, \
|
|
.base_paged_addr_23_16 = 0, \
|
|
.segment_type = ((is_code) ? 0xb : 0x3), /* With descriptor_type (below) = 1 \
|
|
* (code/data), see Figure 3-1 of \
|
|
* section 3.4.3.1 in Intel x86 vol 3: \
|
|
* - Code (bit 3 = 1): \
|
|
* bit 0: 1=Accessed \
|
|
* bit 1: 1=Readable \
|
|
* bit 2: 0=Non-Conforming \
|
|
* - Data (bit 3 = 0): \
|
|
* bit 0: 1=Accessed \
|
|
* bit 1: 1=Writable \
|
|
* bit 2: 0=Expand up (stack-related) \
|
|
* For Conforming/non conforming segments, \
|
|
* see Intel x86 Vol 3 section 4.8.1.1 \
|
|
*/ \
|
|
.descriptor_type = 1, /* 1=Code/Data */ \
|
|
.dpl = ((descr_privilege_level)&0x3), \
|
|
.present = 1, \
|
|
.limit_19_16 = 0xf, \
|
|
.custom = 0, \
|
|
.op_size = 1, /* 32 bits instr/data */ \
|
|
.granularity = 1 /* limit is in 4kB Pages */ \
|
|
})
|
|
|
|
/** The actual GDT */
|
|
static struct x86_segment_descriptor gdt[] = {
|
|
[SEG_NULL] =
|
|
(struct x86_segment_descriptor){
|
|
0,
|
|
},
|
|
[SEG_KCODE] = BUILD_GDTE(0, 1),
|
|
[SEG_KDATA] = BUILD_GDTE(0, 0),
|
|
[SEG_UCODE] = BUILD_GDTE(3, 1),
|
|
[SEG_UDATA] = BUILD_GDTE(3, 0),
|
|
[SEG_K_TSS] = {0,}, // Used by syscall, IRQ while in user space
|
|
// initialized by gdtRegisterTSS
|
|
};
|
|
|
|
int gdtSetup(void)
|
|
{
|
|
struct x86_gdt_register gdtr;
|
|
|
|
/* Address of the GDT */
|
|
gdtr.base_addr = (uint32_t)gdt;
|
|
|
|
/* The limit is the maximum offset in bytes from the base address of
|
|
the GDT */
|
|
gdtr.limit = sizeof(gdt) - 1;
|
|
|
|
/* Commit the GDT into the CPU, and update the segment
|
|
registers. The CS register may only be updated with a long jump
|
|
to an absolute address in the given segment (see Intel x86 doc
|
|
vol 3, section 4.8.1). */
|
|
asm volatile("lgdt %0 \n\
|
|
ljmp %1,$1f \n\
|
|
1: \n\
|
|
movw %2, %%ax \n\
|
|
movw %%ax, %%ss \n\
|
|
movw %%ax, %%ds \n\
|
|
movw %%ax, %%es \n\
|
|
movw %%ax, %%fs \n\
|
|
movw %%ax, %%gs"
|
|
:
|
|
: "m"(gdtr), "i"(BUILD_SEGMENT_REG_VALUE(0, FALSE, SEG_KCODE)),
|
|
"i"(BUILD_SEGMENT_REG_VALUE(0, FALSE, SEG_KDATA))
|
|
: "memory", "eax");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int gdtRegisterTSS(vaddr_t tss_vaddr)
|
|
{
|
|
uint16_t regval_tss;
|
|
|
|
/* Initialize the GDT entry */
|
|
gdt[SEG_K_TSS] = (struct x86_segment_descriptor){
|
|
.limit_15_0 = 0x67, /* See Intel x86 vol 3 section 6.2.2 */
|
|
.base_paged_addr_15_0 = (tss_vaddr)&0xffff,
|
|
.base_paged_addr_23_16 = (tss_vaddr >> 16) & 0xff,
|
|
.segment_type = 0x9, /* See Intel x86 vol 3 figure 6-3 */
|
|
.descriptor_type = 0, /* (idem) */
|
|
.dpl = 3, /* Allowed for CPL3 tasks */
|
|
.present = 1,
|
|
.limit_19_16 = 0, /* Size of a TSS is < 2^16 ! */
|
|
.custom = 0, /* Unused */
|
|
.op_size = 0, /* See Intel x86 vol 3 figure 6-3 */
|
|
.granularity = 1, /* limit is in Bytes */
|
|
.base_paged_addr_31_24 = (tss_vaddr >> 24) & 0xff};
|
|
|
|
/* Load the TSS register into the processor */
|
|
regval_tss = BUILD_SEGMENT_REG_VALUE(0, FALSE, SEG_K_TSS);
|
|
asm("ltr %0" : : "r"(regval_tss));
|
|
|
|
return 0;
|
|
}
|