matos/tests/test.c
2023-11-08 21:52:55 +01:00

547 lines
16 KiB
C

#include "alloc.h"
#include "allocArea.h"
#include "ata.h"
#include "assert.h"
#include "cpu_context.h"
#include "kernel.h"
#include "klibc.h"
#include "thread.h"
#include "list.h"
#include "mem.h"
#include "mmuContext.h"
#include "paging.h"
#include "process.h"
#include "serial.h"
#include "stack.h"
#include "synchro.h"
#include "syscall.h"
#include "swintr.h"
#include "ringbuffer.h"
#include "time.h"
void testMemcpyPerf()
{
struct test_struct {
char data[4096];
};
// instantiate 2 structs. for our purposes, we don't care what data is in
// there. set them to `volatile` so the compiler won't optimize away what we
// do with them
volatile struct test_struct dest, source;
printf("Test Memcpy perf\n");
// run through powers-of-two memcpy's, printing stats for each test
for (size_t len = 1; len <= sizeof(dest); len <<= 1) {
uint32_t start = read_cycle_counter(); // << Start count
memcpy((void *)&dest, (void *)&source, len);
uint32_t stop = read_cycle_counter(); // << Stop count
// print out the cycles consumed
printf("len = %d, %d %d cyccnt = %d, cycles/byte = %d\n", (uint32_t)len, stop, start,
stop - start, (stop - start) / len);
}
}
void testPhymem(void)
{
printf("Testing memory PHY\n");
struct phyMemDesc *allocated_page_list;
struct phyMemDesc
*page; // Cast in mem_desc to use it. In fact it's the addr of 4K free memory
list_init(allocated_page_list);
int allocCount = 0;
int freeCount = 0;
uint freePageStatBegin, usedPageStatBegin;
uint freePageStatAlloc, usedPageStatAlloc;
uint freePageStatFree, usedPageStatFree;
memGetStat(&freePageStatBegin, &usedPageStatBegin);
while ((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL) {
page->phy_addr = allocCount;
allocCount++;
list_add_tail(allocated_page_list, page);
}
printf("%d pages allocated\n", allocCount);
memGetStat(&freePageStatAlloc, &usedPageStatAlloc);
assert(freePageStatAlloc == 0);
assert((usedPageStatAlloc - usedPageStatBegin) == (uint)allocCount);
while ((allocated_page_list != NULL) && (page = list_pop_head(allocated_page_list)) != NULL) {
assertmsg(page->phy_addr == (ulong)freeCount, "page %d modified", page);
assertmsg(unrefPhyPage((ulong)page) >= 0, "Failed to free page %d\n", (ulong)page);
freeCount++;
}
printf("%d pages freed\n", freeCount);
memGetStat(&freePageStatFree, &usedPageStatFree);
assert(freePageStatFree == freePageStatBegin);
assert(usedPageStatFree == usedPageStatBegin);
assertmsg((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL,
"Cannot allocate memory\n");
unrefPhyPage((ulong)page);
}
static void *testAllocNSet(size_t size)
{
void *allocated = malloc(size);
assert(allocated);
memset(allocated, size, size);
return allocated;
}
void testAllocArea(){
vaddr_t area = areaAlloc(1, 0);
vaddr_t area2 = areaAlloc(1, AREA_PHY_MAP);
assert(area != area2);
areaFree(area);
areaFree(area2);
}
void testAlloc(void)
{
assert(malloc(1410065407) == NULL);
for (uint i = 0; i < PAGE_SIZE / (sizeof(struct slabEntry)); i++) {
assert(malloc(sizeof(struct slabEntry)) != NULL);
}
for (uint i = 0; i < PAGE_SIZE / (sizeof(struct slabDesc)); i++) {
assert(malloc(sizeof(struct slabDesc)) != NULL);
}
assert(malloc(1));
assert(malloc(2));
assert(malloc(3));
assert(malloc(4));
void *malloc1 = malloc(sizeof(void *));
void *malloc2 = malloc(sizeof(void *));
assert((char *)malloc2 == ((char *)malloc1 + sizeof(void *)));
free(malloc2);
void *malloc3 = malloc(sizeof(void *));
assertmsg((char *)malloc2 == (char *)malloc3, " %d %d\n", malloc2, malloc3);
free(malloc1);
free(malloc3);
void *alloc1 = testAllocNSet(1024);
void *alloc2 = testAllocNSet(1024);
void *alloc3 = testAllocNSet(1024);
void *alloc4 = testAllocNSet(1024);
void *alloc5 = testAllocNSet(1024);
void *alloc6 = testAllocNSet(1024);
void *alloc7 = testAllocNSet(4096);
void *alloc8 = testAllocNSet(8192);
free(alloc1);
free(alloc2);
free(alloc3);
free(alloc4);
free(alloc5);
free(alloc6);
free(alloc7);
free(alloc8);
void *alloc11 = testAllocNSet(1024);
void *alloc12 = testAllocNSet(1024);
void *alloc13 = testAllocNSet(1024);
void *alloc14 = testAllocNSet(1024);
void *alloc15 = testAllocNSet(1024);
void *alloc16 = testAllocNSet(1024);
free(alloc11);
free(alloc12);
free(alloc13);
free(alloc14);
free(alloc15);
free(alloc16);
}
void testPaging(void)
{
printf("Testing paging\n");
struct phyMemDesc *allocated_page_list;
struct phyMemDesc
*page; // Cast in mem_desc to use it. In fact it's the addr of 4K free memory
list_init(allocated_page_list);
int allocCount = 0;
int freeCount = 0;
while ((page = (struct phyMemDesc *)areaAlloc(1, AREA_PHY_MAP)) != NULL) {
memset(page, allocCount, PAGE_SIZE);
allocCount++;
list_add_tail(allocated_page_list, page);
}
printf("%d pages allocated\n", allocCount);
while (!list_is_empty(allocated_page_list) &&
(page = list_pop_head(allocated_page_list)) != NULL) {
assertmsg((char)page->phy_addr == (char)freeCount, "page modified %d but is %d\n",
freeCount, page->phy_addr);
areaFree((vaddr_t)page);
freeCount++;
}
printf("%d pages freed\n", freeCount);
assert(freeCount == allocCount);
assertmsg((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL,
"Cannot allocate memory\n");
unrefPhyPage((ulong)page);
}
static void test_backtrace_2(int a, int b)
{
printStackTrace(a + b);
}
static void test_backtrace_1(int a)
{
test_backtrace_2(a, 3);
}
void test_backtrace()
{
test_backtrace_1(2);
}
/* ======================================================================
* Demonstrate the use of the CPU kernet context management API:
* - A coroutine prints "Hlowrd" and switches to the other after each
* letter
* - A coroutine prints "el ol\n" and switches back to the other after
* each letter.
* The first to reach the '\n' returns back to main.
*/
struct cpu_state *ctxt_hello1;
struct cpu_state *ctxt_hello2;
struct cpu_state *ctxt_main;
vaddr_t hello1_stack, hello2_stack;
static void reclaim_stack(void *stack_vaddr)
{
free(stack_vaddr);
}
static void exit_hello12(void *stack_vaddr)
{
printf("Stopping hello\n");
cpu_context_exit_to(ctxt_main, (cpu_kstate_function_arg1_t *)reclaim_stack,
(vaddr_t)stack_vaddr);
}
static void hello1(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
printf("hello1: %c\n", *str);
cpu_context_switch(&ctxt_hello1, ctxt_hello2);
}
/* You can uncomment this in case you explicitly want to exit
now. But returning from the function will do the same */
/* cpu_context_exit_to(ctxt_main,
(cpu_kstate_function_arg1_t*) reclaim_stack,
hello1_stack); */
}
static void hello2(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
printf("hello2: %c\n", *str);
cpu_context_switch(&ctxt_hello2, ctxt_hello1);
}
/* You can uncomment this in case you explicitly want to exit
now. But returning from the function will do the same */
/* cpu_context_exit_to(ctxt_main,
(cpu_kstate_function_arg1_t*) reclaim_stack,
hello2_stack); */
}
void testCoroutine()
{
#define DEMO_STACK_SIZE 1024
/* Allocate the stacks */
hello1_stack = (vaddr_t)malloc(DEMO_STACK_SIZE);
hello2_stack = (vaddr_t)malloc(DEMO_STACK_SIZE);
/* Initialize the coroutines' contexts */
cpu_kstate_init(&ctxt_hello1, (cpu_kstate_function_arg1_t *)hello1, (uint32_t) "Hlowrd",
(vaddr_t)hello1_stack, DEMO_STACK_SIZE,
(cpu_kstate_function_arg1_t *)exit_hello12, (uint32_t)hello1_stack);
cpu_kstate_init(&ctxt_hello2, (cpu_kstate_function_arg1_t *)hello2, (uint32_t) "el ol\n",
(vaddr_t)hello2_stack, DEMO_STACK_SIZE,
(cpu_kstate_function_arg1_t *)exit_hello12, (uint32_t)hello2_stack);
/* Go to first coroutine */
printf("Printing Hello World\\n...\n");
cpu_context_switch(&ctxt_main, ctxt_hello1);
/* The first coroutine to reach the '\n' switched back to us */
printf("Back in main !\n");
}
static void kthread1(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
printf("kth1: %c\n", *str);
threadYield();
}
}
static void kthread2(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
printf("kth2: %c\n", *str);
threadYield();
}
}
static int initialJiffies = 0;
void sleepThread(void *arg)
{
(void)arg;
int secSleep = 0;
initialJiffies = jiffies;
while (secSleep < 5) {
// printf("Sleeping loop %d\n", secSleep);
secSleep++;
threadMsleep(100);
}
unsigned long ellapsedTime = jiffies_to_msecs(jiffies - initialJiffies);
assertmsg(ellapsedTime >= 500 && ellapsedTime < 510, "ellapsedTime %d\n", ellapsedTime);
threadMsleep(0);
printf("I should never be showed\n");
assert(1);
}
struct mutex mutexTest;
void mutThread(void *arg)
{
(void)arg;
printf("%s started\n", (char *)arg);
int test = 5;
while (test > 0) {
mutexLock(&mutexTest);
printf("%s sleep\n", (char *)arg);
threadMsleep(100);
printf("%s up\n", (char *)arg);
mutexUnlock(&mutexTest);
test--;
}
}
static int haveTimeout = 0;
void wqThread(void *arg)
{
(void)arg;
DECLARE_WAITQUEUE(test);
waitQueueInit(&test);
assert(waitTimeout(&test, 100) == 1);
waitQueueFree(&test);
haveTimeout = 1;
}
void testKthread()
{
mutexInit(&mutexTest);
// It is not expected to have necessarily "Hello world\n" properly written
threadCreate("Test2", (cpu_kstate_function_arg1_t *)kthread2, (void *)"el ol\n");
threadCreate("Test1", (cpu_kstate_function_arg1_t *)kthread1, (void *)"Hlowrd\n");
threadMsleep(100);
threadCreate("wq timeout", wqThread, NULL);
threadMsleep(200);
assert(haveTimeout);
threadCreate("sleep", sleepThread, NULL);
threadMsleep(500);
threadCreate("mtest1", mutThread, "mut1");
threadCreate("mtest2", mutThread, "mut2");
threadCreate("mtest3", mutThread, "mut3");
threadMsleep(2000);
}
void testATAThread(){
uint16_t buf[DISK_SECTOR_SIZE/2];
struct ata_device *dev = ATAGetDevice(0, 0);
if(dev != NULL){
ATAReadSector(dev, 0, 1, buf);
printf("Reading from disk 0x%x 0x%x 0x%x 0x%x\n", buf[0], buf[1], buf[2], buf[3]);
memset(buf, 0, sizeof(buf));
buf[0]= 0x1;
buf[1]= 0x2;
buf[2]= 0x3;
buf[3]= 0x4;
//ATAWriteSector(dev, 0, 1, buf);
}
}
static void testATA(){
threadCreate("ATA_TEST", testATAThread, NULL);
//testATAThread();
}
static void testMMUContext()
{
printf("Testing mmu\n");
struct mmu_context *current = mmuContextGetCurrent();
assert(current != NULL);
struct mmu_context *new = mmuContextCreate();
assert(new != NULL);
mmuContextSwitch(new);
mmuContextSwitch(current);
mmuContextUnref(new);
}
static void userProgramm()
{
int ret;
asm volatile("movl %1,%%eax \n"
"movl %2,%%ebx \n"
"movl %3,%%ecx \n"
"movl %4,%%edx \n"
"int %5\n"
"movl %%eax, %0"
: "=g"(ret)
: "g"(SYSCALL_ID_YOLO), "g"(0), "g"(0), "g"(0), "i"(SYSCALL_INTR_NB)
: "eax", "ebx", "ecx", "edx");
asm volatile("movl %1,%%eax \n"
"movl %2,%%ebx \n"
"movl %3,%%ecx \n"
"movl %4,%%edx \n"
"int %5\n"
"movl %%eax, %0"
: "=g"(ret)
: "g"(SYSCALL_ID_EXIT), "g"(0), "g"(0), "g"(0), "i"(SYSCALL_INTR_NB)
: "eax", "ebx", "ecx", "edx");
}
static void testProcess(){
struct process *proc= processCreate("TESTPROCESS");
struct thread *th1 = threadCreate("th1", sleepThread, NULL);
struct thread *th2 = threadCreate("th2", sleepThread, NULL);
processAddThread(proc, th1);
processAddThread(proc, th2);
processListPrint();
threadMsleep(600);
processRemoveThread(th1);
processRemoveThread(th2);
processUnref(proc);
printf("Next process list should be empty\n");
processListPrint();
printf("Running user space app\n");
struct process *proc2= processCreate("TESTPROCESS2");
threadChangeCurrentContext(processGetMMUContext(proc2));
uaddr_t stackTop = 0xfffffffc;
uaddr_t stackBottom = ALIGN_DOWN(stackTop, PAGE_SIZE);
paddr_t stackPhy = allocPhyPage(1);
assert(pageMap(stackBottom, stackPhy, PAGING_MEM_USER | PAGING_MEM_WRITE | PAGING_MEM_READ) == 0);
unrefPhyPage(stackPhy);
uaddr_t mem = PAGING_BASE_USER_ADDRESS;
paddr_t memPhy = allocPhyPage(1);
assert(pageMap(mem, memPhy, PAGING_MEM_USER | PAGING_MEM_WRITE | PAGING_MEM_READ) == 0);
unrefPhyPage(memPhy);
memcpy((void *)mem, userProgramm, PAGE_SIZE);
threadCreateUser("UserProg", proc2, mem, 0, 0, stackTop);
threadYield();
processUnref(proc2);
threadChangeCurrentContext(NULL);
printf("Running user space app DONE\n");
}
void testRingBuffer()
{
printf("Testing ring buffer\n");
ringbuffer_t inst = ringbufferCreate(4);
ringbufferDebug(inst);
uint8_t item;
assert(ringbufferEnqueue(inst, 1));
ringbufferDebug(inst);
assert(ringbufferEnqueue(inst, 2));
ringbufferDebug(inst);
assert(ringbufferEnqueue(inst, 3));
ringbufferDebug(inst);
assert(ringbufferEnqueue(inst, 4));
ringbufferDebug(inst);
assert(ringbufferEnqueue(inst, 5) == FALSE);
ringbufferDebug(inst);
assert(ringbufferDequeue(inst, &item));
assert(item == 1);
ringbufferDebug(inst);
assert(ringbufferEnqueue(inst, 5));
ringbufferDebug(inst);
assert(ringbufferDequeue(inst, &item));
assert(item == 2);
ringbufferDebug(inst);
assert(ringbufferDequeue(inst, &item));
assert(item == 3);
ringbufferDebug(inst);
assert(ringbufferDequeue(inst, &item));
assert(item == 4);
ringbufferDebug(inst);
assert(ringbufferDequeue(inst, &item));
assert(item == 5);
ringbufferDebug(inst);
assert(ringbufferDequeue(inst, &item) == FALSE);
ringbufferDebug(inst);
ringbufferDestroy(inst);
}
void run_test(void)
{
// Example of checking thx to access attributs
//int a[4] = {0};
//int b[3] = {0};
//memcpy(b, a, sizeof(a));
uint freemem, usedmem;
uint afterFreemem, afterUsedmem;
memGetStat(&freemem, &usedmem);
testATA();
testMemcpyPerf();
{
int test = 1000;
long long int test64 = 0x100000000;
assert(printf("hello") == 5);
assert(printf("hello\n") == 6);
assert(printf("hello %d\n", test) == 11);
assert(printf("hello %llx\n", test64) == 16);
assert(printf("hello %c\n", 'a') == 8);
assert(printf("hello %s\n", "world") == 12);
}
{
char *strAlloc;
int ret = asprintf(&strAlloc, "hello %s\n", "world");
printf("asprint ret %d %s\n", ret, strAlloc);
assert(ret == 13); // include the '\0'
free(strAlloc);
}
testPaging();
printf("Testing Serial\n");
serialPutc('h');
serialPutc('e');
serialPutc('l');
serialPutc('l');
serialPutc('o');
testAlloc();
testAllocArea();
printf("Testing backtrace\n");
test_backtrace();
testCoroutine();
//int nbThread = threadCount();
testKthread();
//assert(nbThread + 1 == threadCount());//For sleep Thread
testMMUContext();
testProcess();
memGetStat(&afterFreemem, &afterUsedmem);
printf("free %d -> %d\n", freemem, afterFreemem);
testRingBuffer();
}