matos/tests/test.c

396 lines
12 KiB
C
Raw Normal View History

#include "alloc.h"
2021-10-05 23:55:15 +02:00
#include "ata.h"
#include "assert.h"
#include "cpu_context.h"
#include "klibc.h"
2020-04-24 23:34:34 +02:00
#include "kthread.h"
#include "list.h"
#include "mem.h"
2018-11-12 23:07:59 +01:00
#include "paging.h"
2018-11-08 22:09:12 +01:00
#include "serial.h"
#include "stack.h"
2020-07-08 23:12:45 +02:00
#include "synchro.h"
2020-08-19 13:58:52 +02:00
#include "time.h"
2018-11-08 22:09:12 +01:00
2021-09-15 21:53:08 +02:00
void testMemcpyPerf()
{
struct test_struct {
char data[4096];
};
// instantiate 2 structs. for our purposes, we don't care what data is in
// there. set them to `volatile` so the compiler won't optimize away what we
// do with them
volatile struct test_struct dest, source;
printf("Test Memcpy perf\n");
// run through powers-of-two memcpy's, printing stats for each test
for (size_t len = 1; len <= sizeof(dest); len <<= 1) {
uint32_t start = read_cycle_counter(); // << Start count
memcpy((void *)&dest, (void *)&source, len);
uint32_t stop = read_cycle_counter(); // << Stop count
// print out the cycles consumed
printf("len = %d, %d %d cyccnt = %d, cycles/byte = %d\n", (uint32_t)len, stop, start,
stop - start, (stop - start) / len);
}
}
2018-11-12 18:06:46 +01:00
void testPhymem(void)
{
printf("Testing memory PHY\n");
2021-04-10 21:53:03 +02:00
struct phyMemDesc *allocated_page_list;
struct phyMemDesc
*page; // Cast in mem_desc to use it. In fact it's the addr of 4K free memory
list_init(allocated_page_list);
int allocCount = 0;
int freeCount = 0;
2021-01-23 21:51:00 +01:00
uint freePageStatBegin, usedPageStatBegin;
uint freePageStatAlloc, usedPageStatAlloc;
uint freePageStatFree, usedPageStatFree;
memGetStat(&freePageStatBegin, &usedPageStatBegin);
2021-04-10 21:53:03 +02:00
while ((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL) {
page->phy_addr = allocCount;
allocCount++;
list_add_tail(allocated_page_list, page);
}
printf("%d pages allocated\n", allocCount);
2021-01-23 21:51:00 +01:00
memGetStat(&freePageStatAlloc, &usedPageStatAlloc);
assert(freePageStatAlloc == 0);
assert((usedPageStatAlloc - usedPageStatBegin) == (uint)allocCount);
while ((page = list_pop_head(allocated_page_list)) != NULL) {
assertmsg(page->phy_addr == (ulong)freeCount, "page %d modified", page);
assertmsg(unrefPhyPage((ulong)page) >= 0, "Failed to free page %d\n", (ulong)page);
freeCount++;
}
printf("%d pages freed\n", freeCount);
2021-01-23 21:51:00 +01:00
memGetStat(&freePageStatFree, &usedPageStatFree);
assert(freePageStatFree == freePageStatBegin);
assert(usedPageStatFree == usedPageStatBegin);
2021-09-15 21:53:08 +02:00
assertmsg((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL,
"Cannot allocate memory\n");
unrefPhyPage((ulong)page);
}
2019-04-17 23:47:25 +02:00
static void *testAllocNSet(size_t size)
{
void *allocated = malloc(size);
assert(allocated);
memset(allocated, size, size);
return allocated;
2019-04-17 23:47:25 +02:00
}
static void testAlloc(void)
{
2021-01-22 22:59:45 +01:00
assert(malloc(1410065407) == NULL);
for (uint i = 0; i < PAGE_SIZE / (sizeof(struct slabEntry)); i++) {
malloc(sizeof(struct slabEntry));
}
for (uint i = 0; i < PAGE_SIZE / (sizeof(struct slabDesc)); i++) {
malloc(sizeof(struct slabDesc));
}
assert(malloc(1));
assert(malloc(2));
assert(malloc(3));
assert(malloc(4));
void *malloc1 = malloc(sizeof(void *));
void *malloc2 = malloc(sizeof(void *));
assert((char *)malloc2 == ((char *)malloc1 + sizeof(void *)));
free(malloc2);
void *malloc3 = malloc(sizeof(void *));
assertmsg((char *)malloc2 == (char *)malloc3, " %d %d\n", malloc2, malloc3);
void *alloc1 = testAllocNSet(1024);
void *alloc2 = testAllocNSet(1024);
void *alloc3 = testAllocNSet(1024);
void *alloc4 = testAllocNSet(1024);
void *alloc5 = testAllocNSet(1024);
void *alloc6 = testAllocNSet(1024);
void *alloc7 = testAllocNSet(4096);
2021-08-19 16:44:47 +02:00
void *alloc8 = testAllocNSet(8192);
free(alloc1);
free(alloc2);
free(alloc3);
free(alloc4);
free(alloc5);
free(alloc6);
free(alloc7);
2021-08-19 16:44:47 +02:00
free(alloc8);
void *alloc11 = testAllocNSet(1024);
void *alloc12 = testAllocNSet(1024);
void *alloc13 = testAllocNSet(1024);
void *alloc14 = testAllocNSet(1024);
void *alloc15 = testAllocNSet(1024);
void *alloc16 = testAllocNSet(1024);
free(alloc11);
free(alloc12);
free(alloc13);
free(alloc14);
free(alloc15);
free(alloc16);
}
2018-11-12 23:07:59 +01:00
static void testPaging(void)
{
printf("Testing paging\n");
2021-04-10 21:53:03 +02:00
struct phyMemDesc *allocated_page_list;
struct phyMemDesc
*page; // Cast in mem_desc to use it. In fact it's the addr of 4K free memory
list_init(allocated_page_list);
int allocCount = 0;
int freeCount = 0;
2018-11-12 23:07:59 +01:00
2021-04-10 21:53:03 +02:00
while ((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL) {
assertmsg(pageMap((vaddr_t)page, (paddr_t)page, PAGING_MEM_WRITE) == 0,
"Fail to map page %d\n", allocCount);
memset(page, allocCount, PAGE_SIZE);
allocCount++;
list_add_tail(allocated_page_list, page);
}
printf("%d pages allocated\n", allocCount);
2018-11-12 23:07:59 +01:00
2021-04-09 20:47:20 +02:00
while (!list_is_empty(allocated_page_list) &&
(page = list_pop_head(allocated_page_list)) != NULL) {
assertmsg((char)page->phy_addr == (char)freeCount, "page modified %d but is %d\n",
freeCount, page->phy_addr);
assertmsg(unrefPhyPage((ulong)page) >= 0, "Failed to free page %d\n", (ulong)page);
pageUnmap((vaddr_t)page);
freeCount++;
}
printf("%d pages freed\n", freeCount);
2018-11-12 23:07:59 +01:00
2021-09-15 21:53:08 +02:00
assertmsg((page = (struct phyMemDesc *)allocPhyPage(1)) != NULL,
"Cannot allocate memory\n");
unrefPhyPage((ulong)page);
2018-11-12 23:07:59 +01:00
}
static void test_backtrace_2(int a, int b)
{
printStackTrace(a + b);
}
static void test_backtrace_1(int a)
{
test_backtrace_2(a, 3);
}
void test_backtrace()
{
test_backtrace_1(2);
}
/* ======================================================================
* Demonstrate the use of the CPU kernet context management API:
* - A coroutine prints "Hlowrd" and switches to the other after each
* letter
* - A coroutine prints "el ol\n" and switches back to the other after
* each letter.
* The first to reach the '\n' returns back to main.
*/
struct cpu_state *ctxt_hello1;
struct cpu_state *ctxt_hello2;
struct cpu_state *ctxt_main;
vaddr_t hello1_stack, hello2_stack;
static void reclaim_stack(void *stack_vaddr)
{
free(stack_vaddr);
}
static void exit_hello12(void *stack_vaddr)
{
cpu_context_exit_to(ctxt_main, (cpu_kstate_function_arg1_t *)reclaim_stack,
(vaddr_t)stack_vaddr);
}
static void hello1(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
printf("hello1: %c\n", *str);
cpu_context_switch(&ctxt_hello1, ctxt_hello2);
}
/* You can uncomment this in case you explicitly want to exit
now. But returning from the function will do the same */
/* cpu_context_exit_to(ctxt_main,
(cpu_kstate_function_arg1_t*) reclaim_stack,
hello1_stack); */
}
static void hello2(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
printf("hello2: %c\n", *str);
cpu_context_switch(&ctxt_hello2, ctxt_hello1);
}
/* You can uncomment this in case you explicitly want to exit
now. But returning from the function will do the same */
/* cpu_context_exit_to(ctxt_main,
(cpu_kstate_function_arg1_t*) reclaim_stack,
hello2_stack); */
}
void testCoroutine()
{
#define DEMO_STACK_SIZE 1024
/* Allocate the stacks */
hello1_stack = (vaddr_t)malloc(DEMO_STACK_SIZE);
hello2_stack = (vaddr_t)malloc(DEMO_STACK_SIZE);
/* Initialize the coroutines' contexts */
cpu_kstate_init(&ctxt_hello1, (cpu_kstate_function_arg1_t *)hello1, (uint32_t) "Hlowrd",
(vaddr_t)hello1_stack, DEMO_STACK_SIZE,
(cpu_kstate_function_arg1_t *)exit_hello12, (uint32_t)hello1_stack);
cpu_kstate_init(&ctxt_hello2, (cpu_kstate_function_arg1_t *)hello2, (uint32_t) "el ol\n",
(vaddr_t)hello2_stack, DEMO_STACK_SIZE,
(cpu_kstate_function_arg1_t *)exit_hello12, (uint32_t)hello2_stack);
/* Go to first coroutine */
printf("Printing Hello World\\n...\n");
cpu_context_switch(&ctxt_main, ctxt_hello1);
/* The first coroutine to reach the '\n' switched back to us */
printf("Back in main !\n");
}
2020-04-24 23:34:34 +02:00
static void kthread1(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
2020-07-06 17:21:49 +02:00
printf("kth1: %c\n", *str);
kthreadYield();
2020-04-24 23:34:34 +02:00
}
}
static void kthread2(void *strIn)
{
char *str = (char *)strIn;
for (; *str != '\n'; str++) {
2020-07-06 17:21:49 +02:00
printf("kth2: %c\n", *str);
kthreadYield();
2020-04-24 23:34:34 +02:00
}
}
2020-08-19 13:58:52 +02:00
static int initialJiffies = 0;
void sleepThread(void *arg)
{
2020-07-06 17:21:49 +02:00
(void)arg;
2020-08-19 13:58:52 +02:00
int secSleep = 0;
initialJiffies = jiffies;
while (secSleep < 5) {
// printf("Sleeping loop %d\n", secSleep);
2020-07-06 17:21:49 +02:00
secSleep++;
kthreadMsleep(1000);
}
2020-08-19 13:58:52 +02:00
unsigned long ellapsedTime = jiffies_to_msecs(jiffies - initialJiffies);
assertmsg(ellapsedTime >= 5000 && ellapsedTime < 5100, "ellapsedTime %d\n", ellapsedTime);
2020-07-08 23:12:45 +02:00
kthreadMsleep(0);
printf("I should never be showed\n");
assert(1);
}
struct mutex mutexTest;
2020-08-19 13:58:52 +02:00
void mutThread(void *arg)
{
2020-07-08 23:12:45 +02:00
(void)arg;
printf("%s started\n", (char *)arg);
int test = 5;
2020-08-19 13:58:52 +02:00
while (test > 0) {
2020-07-08 23:12:45 +02:00
mutexLock(&mutexTest);
printf("%s sleep\n", (char *)arg);
kthreadMsleep(1000);
printf("%s up\n", (char *)arg);
mutexUnlock(&mutexTest);
test--;
}
2020-07-06 17:21:49 +02:00
}
2020-08-19 13:58:52 +02:00
static int haveTimeout = 0;
void wqThread(void *arg)
{
(void)arg;
DECLARE_WAITQUEUE(test);
2020-08-19 14:31:16 +02:00
waitQueueInit(&test);
2020-08-19 13:58:52 +02:00
assert(waitTimeout(&test, 1000) == 1);
2020-08-19 14:31:16 +02:00
waitQueueFree(&test);
2020-08-19 13:58:52 +02:00
haveTimeout = 1;
}
2020-07-06 17:21:49 +02:00
2020-04-24 23:34:34 +02:00
void testKthread()
{
2020-07-08 23:12:45 +02:00
mutexInit(&mutexTest);
2020-07-06 17:21:49 +02:00
// It is not expected to have necessarily "Hello world\n" properly written
kthreadCreate("Test2", (cpu_kstate_function_arg1_t *)kthread2, (void *)"el ol\n");
2020-07-08 23:12:45 +02:00
kthreadCreate("Test1", (cpu_kstate_function_arg1_t *)kthread1, (void *)"Hlowrd\n");
2020-07-06 17:21:49 +02:00
kthreadMsleep(1000);
2020-08-19 13:58:52 +02:00
kthreadCreate("wq timeout", wqThread, NULL);
kthreadMsleep(2000);
assert(haveTimeout);
2020-07-06 17:21:49 +02:00
kthreadCreate("sleep", sleepThread, NULL);
2020-07-08 23:12:45 +02:00
kthreadMsleep(5000);
kthreadCreate("mtest1", mutThread, "mut1");
kthreadCreate("mtest2", mutThread, "mut2");
kthreadCreate("mtest3", mutThread, "mut3");
2020-04-24 23:34:34 +02:00
}
2021-10-05 23:55:15 +02:00
void testATAThread(){
uint16_t buf[DISK_SECTOR_SIZE/2];
struct ata_device *dev = ATAGetDevice(0, 0);
if(dev != NULL){
ATAReadSector(dev, 0, 1, buf);
printf("Reading from disk 0x%x 0x%x 0x%x 0x%x\n", buf[0], buf[1], buf[2], buf[3]);
memset(buf, 0, sizeof(buf));
buf[0]= 0x1;
buf[1]= 0x2;
buf[2]= 0x3;
buf[3]= 0x4;
ATAWriteSector(dev, 0, 1, buf);
}
}
void testATA(){
kthreadCreate("ATA_TEST", testATAThread, NULL);
//testATAThread();
}
2018-11-12 18:06:46 +01:00
void run_test(void)
{
2021-10-05 23:55:15 +02:00
testATA();
2021-09-15 21:53:08 +02:00
testMemcpyPerf();
2021-01-25 10:17:19 +01:00
{
int test = 1000;
long long int test64 = 0x100000000;
assert(printf("hello") == 5);
assert(printf("hello\n") == 6);
assert(printf("hello %d\n", test) == 11);
assert(printf("hello %llx\n", test64) == 16);
assert(printf("hello %c\n", 'a') == 8);
assert(printf("hello %s\n", "world") == 12);
}
{
char *strAlloc;
int ret = asprintf(&strAlloc, "hello %s\n", "world");
printf("asprint ret %d %s\n", ret, strAlloc);
2021-04-09 20:47:20 +02:00
assert(ret == 13); // include the '\0'
2021-01-25 10:17:19 +01:00
free(strAlloc);
}
testPaging();
printf("Testing Serial\n");
serialPutc('h');
serialPutc('e');
serialPutc('l');
serialPutc('l');
serialPutc('o');
testAlloc();
printf("Testing backtrace\n");
test_backtrace();
testCoroutine();
testKthread();
2018-11-08 22:09:12 +01:00
}